Interplay among coactivator-associated arginine methyltransferase 1, CBP, and CIITA in IFN-gamma-inducible MHC-II gene expression.
نویسندگان
چکیده
Class II major histocompatibility (MHC-II) genes are prototype targets of IFN-gamma. IFN-gamma activates the expression of the non-DNA-binding master regulator of MHC-II, class II transactivator (CIITA), which is crucial for enhanceosome formation and gene activation. This report shows the importance of the histone methyltransferase, coactivator-associated arginine methyltransferase (CARM1/PRMT4), during IFN-gamma-induced MHC-II gene activation. It also demonstrates the coordinated regulation of CIITA, CARM1, and the acetyltransferase cyclic-AMP response element binding (CREB)-binding protein (CBP) during this process. CARM1 synergizes with CIITA in activating MHC-II transcription and synergy is abrogated when an arginine methyltransferase-defective CARM1 mutant is used. Protein-arginine methyltransferase 1 has much less effect on MHC-II transcription. Specific RNA interference reduced CARM1 expression as well as MHC-II expression. The recruitment of CARM1 to the promoter requires endogenous CIITA and results in methylation of histone H3-R17; hence, CIITA is an upstream regulator of histone methylation. Previous work has shown that CARM1 can methylate CBP at three arginine residues. Using wild-type CBP and a mutant of CBP lacking the CARM1-targeted arginine residues (R3A), we show that arginine methylation of CBP is required for IFN-gamma induction of MHC-II. A kinetic analysis shows that CIITA, CARM1, and H3-R17 methylation all precede CBP loading on the MHC-II promoter during IFN-gamma treatment. These results suggest functional and temporal relationships among CIITA, CARM1, and CBP for IFN-gamma induction of MHC-II.
منابع مشابه
Involvement of CREB binding protein in expression of major histocompatibility complex class II genes via interaction with the class II transactivator.
The class II transactivator (CIITA) is a key regulatory factor that controls expression of the major histocompatibility complex (MHC) class II genes that are essential components for antigen presentation and thus regulation of the immune response. We show here that the adenovirus E1A protein interferes with the action of CIITA and inhibits both B-cell-specific and gamma interferon (IFN-gamma)-i...
متن کاملProtein arginine methyltransferase 1 (PRMT1) represses MHC II transcription in macrophages by methylating CIITA
Efficient presentation of alien antigens triggers activation of T lymphocytes and robust host defense against invading pathogens. This pathophysiological process relies on the expression of major histocompatibility complex (MHC) molecules in antigen presenting cells such as macrophages. Aberrant MHC II transactivation plays a crucial role in the pathogenesis of atherosclerosis. Class II transac...
متن کاملClass II transactivator (CIITA) is sufficient for the inducible expression of major histocompatibility complex class II genes
The class II transactivator (CIITA) has been shown to be required for major histocompatibility complex (MHC) class II gene expression in B cells and its deficiency is responsible for a hereditary MHC class II deficiency. Here we show that CIITA is also involved in the inducible expression of class II genes upon interferon gamma (IFN-gamma) treatment. The expression of CIITA is also inducible wi...
متن کاملIdentification of class II transcriptional activator-induced genes by representational difference analysis: discoordinate regulation of the DN alpha/DO beta heterodimer.
Class II transcriptional activator (CIITA) is a master regulator of MHC class II genes, including DR, DP, and DQ, and MHC class II-associated genes DM and invariant chain. To determine the repertoire of genes that is regulated by CIITA and to identify uncharacterized CIITA-inducible genes, we used representational difference analysis. Representational difference analysis screens for differentia...
متن کاملChlamydia Inhibits Interferon γ–inducible Major Histocompatibility Complex Class II Expression by Degradation of Upstream Stimulatory Factor 1
We report that chlamydiae, which are obligate intracellular bacterial pathogens, can inhibit interferon (IFN)-gamma-inducible major histocompatibility complex (MHC) class II expression. However, the IFN-gamma-induced IFN regulatory factor-1 (IRF-1) and intercellular adhesion molecule 1 (ICAM-1) expression is not affected, suggesting that chlamydia may selectively target the IFN-gamma signaling ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 102 45 شماره
صفحات -
تاریخ انتشار 2005